

TAQ DNA Polymeprase (5 units/μI)

Description

Reverse primer

Recommended PCR Condition

15 – 150 ng * **Template** 0.4 μM – 0.5 μM Forward primer 0.4 μM – 0.5 μM

5 μ| 10X Buffer

dNTPs 0.2 mM (each)

0.25 μI (1.25 U) TAQ DNA Polymerase adjust to 50 μI ddH2O

50 μI **Total Volume**

Duffer dNTP's Mix (25mM) or (10mM)

TAQ DNA Polymerase

PCR Grade Wata 1 ml

100 μl or 250 μl

50 μI

Adjust to 5 ml

Total Volume 5 ml

10X Buffer Includes: 15mM MgCl2

PCR Protocol : Â Â Â Â Â Â Â Â Â Â Â

- 1. Add 25 µl 2X Master PCR mix into a PCR
- 2. Add 20 µl of nuclease free
- 3. Add 2 µl of each primer from a working stock of 10 picomole/μl of each Final concentration of each primer should be 0.4 11/4M.
- 4. Add 1 µl of your template DNA (10-20 nano grams)

Helpful Hints about primers concentration:

a). Forward and Reverse primers are generally 20â€"40 nucleotides in length with GC content of 45 to 65%. The final concentration of each primer in a reaction varies from 0.05â€"1 μM. If you are not sure of the right primers concentrations for a PCR reaction, We recommend Â Â Â Â Â Â Â

^{*} Optimal amount of DNA template depends on the source and quality of DNA. TAQ DNA Polymerase: 1.25 unit (0.25 11/41) per 50 11/41 reaction is recommended. Please Use 2~2.5 unit in case target size is > 3kb.

you have a primer suspended in sterile water at a concentration of 100 picomoles/μI, dilute it 10 fold to final concentration of 10 picomoles/μI (10 μM) for each working primer. Add 2 μI of each primer to 50 μl of PCR volume.

- If you add 2 µl of a 10 μM stock into a 50 μl reaction, then the concentration of your each prime in the 50 $\hat{1}$ ½I reaction would be 2/50th of 10 $\hat{1}$ ½M, or 4 $\hat{1}$ ½M (400 nM).
- If your PCR primer is supplied as 40 nmol per tube dried, suspend it in 400 μI of sterile water, which will be equivalent to 100 picomoles/μI (100 μM)
- 5. Vortex samples for few seconds or mix the contents by pipetting up and down with a
- 6. If PCR machine does not have a heated lid, add two drops of mineral oil into each
- 1. Use following conditions for a thermocycler (if your fragment size is about 1 KB):

Denaturing Step: 95 °C for 5 minutes Amplification Steps (35 steps)

- 1. 95 °C for 1 minute (Denaturing step)
- BIOTECH 2. 60 °C for 1 minute (annealing step)
- 3. 72 °C for 1 minute (extension step)

Final extension Step:

1. 70 °C for 5 minutes (final extension)

Helpful Hints about extension time:Â An extension time of 1 minute per Kb is recommended. Extension time from of 20 seconds ~ (300bp) to 3 minutes ~ (3 Kb) can be used depending upon the size of your fragment.

8. Troubleshooting

Possible Cause Problem Sugges

Not Sufficient Template

•Â Â

No or low PCR products	Target sequence missing in the	
	template	• Â
		• Â
	Incorrect Primers design	comple
		• Â
	Primers Concentration too low	• Â
	Primers quality	• Â reconst
	Insufficient number of PCR	• Â cycles).
	cycles	• Â
		• Â
		and tim
		• Â anneali
	Denaturation, annealing and extension are not optimal	• Â amplico
		• Â amplific
		• Â
	Inhibitor (s) present in the reaction mix	using cl
		• Â
	Incorrect thermocycler program	• Â

• Â otimal template concentration • Â
ninated template • Â
• Â
• Â
rimer design • Â
• Â
gh concentration of • Â
• Â µM in
ntent in the primers in • Â
ropriate • Â
ninated reaction • Â
e components • during :
v or incorrect annealing • Â
ature • Â
ture replication • Â
• Â
• Â
ate degraded, primers degraded or — • Â
mplate and primers are • Â iinated
• Â

•Â Â

Date Created 2024/07/03

LINK BIOTECH