



# LifeDireX COVID-19 RT-qPCR Detection Kit

Cat No. QP019-0100 Size: 100 Reactions

Sample: 5pg ~ 1ug RNA / 20ul Reaction Storage: Stable for up to 1 year at -20°C

# Description

In view of the joint global efforts of advancing collaborative research in diagnostics, therapeutics, and vaccination in the fight against the COVID-19(SARS-CoV-2) pandemic, Bio-Helix has specifically developed the LifeDireX COVID-19 RT-qPCR Detection Kit for human respiratory tract specimens. The kit is characterized by: (1) High specificity for the ORF1ab and N target markers as recommended by WHO and US CDC; (2) Data obtained in less than 2 hours; and (3) Compatible with standard RT-qPCR machines (ABI 7500, Bio-Rad CFX96, QuantStudio's 7 Flex).

### **Kit Contents**

| Part No.     | Component                 | Volume |
|--------------|---------------------------|--------|
| QP019-0100-1 | 2X RT-qPCR MasterMix      | 1.25ml |
| QP019-0100-2 | COVID-19 Primers          | 100 ul |
| QP019-0100-3 | COVID-19 Probes           | 100 ul |
| QP019-0100-4 | Positive Control Template | 10 ul  |
| QP019-0100-5 | RT-qPCR Enzyme Mix        | 40 ul  |

### **Required Materials**

Real-time PCR tubes Real-time PCR instrument Nuclease–Free H<sub>2</sub>O

## **Real-Time PCR Instrument**

ABI 7500, Bio-Rad CFX96,  $\mathsf{QuantStudio}' \; \mathsf{s} \; \mathsf{7} \; \mathsf{Flex}$ 

## **Application**

Gene Expression (mRNA) Analysis Copy Number Analysis SNP Genotype Analysis









#### **Protocol**

1. PCR Reaction: Thaw and assemble the following components in a 0.2 ml PCR tube on ice just prior to use: COVID-19 Primers, COVID-19 Probes, 2X RT-qPCR MasterMix, and RT-qPCR Enzyme Mix. Caution: Do not add more than one RNA sample into a single qPCR tube. Mix gently. If necessary, centrifuge briefly.

| Component                        | 20 ul Sample                  | 20 ul Positive Control | 20 ul Negative Control |
|----------------------------------|-------------------------------|------------------------|------------------------|
| RNA Sample                       | 5pg ~ 1ug RNA / 20ul Reaction | -                      | -                      |
| COVID-19 Primers                 | 1 ul                          | 1 ul                   | 1 ul                   |
| COVID-19 Probes                  | 1 ul                          | 1 ul                   | 1 ul                   |
| 2X RT-qPCR MasterMix             | 10 ul                         | 10 ul                  | 10 ul                  |
| RT-qPCR Enzyme Mix               | 0.4 ul                        | 0.4 ul                 | 0.4 ul                 |
| Nuclease – Free H <sub>2</sub> O | Up to 20 ul                   | Up to 20 ul            | Up to 20 ul            |

<sup>2.</sup> Use the Nuclease-free  $H_2O$  for the Negative Control while using Positive Control Template for the Positive Control setup. Cap tubes and place in the thermal cycler.

3. Process in the thermal cycler for 42 cycles as follows:

| Steps            | Temperature/Time                                 | Cycle |
|------------------|--------------------------------------------------|-------|
| cDNA Synthesis   | 15 minutes at 42°C                               | 1     |
| Pre-Denaturation | 10 minutes at 95°C                               | 1     |
| Denaturation     | 15 seconds at 95°C                               |       |
| Annealing        | 60 seconds at 60°C                               | 40    |
| Melting curve    | Refer to specific guidelines for instrument used |       |

## Note:

Optimal conditions for amplification will vary depending on the primers and thermal cycler used. It may be necessary to optimize the system for individual primers, template, and thermal cycler.

4. Detection: As four channels (FAM, HEX, ROX, & Cy5) are used in this one tube qPCR assay, we recommend to perform the color (channel) calibration as requested by the instrument's manufacturer. Please refer to the instrument's user manual to perform this calibration. Choose the FAM, HEX, ROX, and Cy5 channels for each sample to be tested with the LifeDireX COVID-19 RT-qPCR Detection Kit. Select "None" for ROX passive reference on any Applied Biosystem's qPCR machine.









# **Troubleshooting**

Refer to the table below to troubleshoot problems that you may encounter when quantify of nucleic acid targets with the kit.

| Trouble                     | Cause         | Solution |                                                                       |
|-----------------------------|---------------|----------|-----------------------------------------------------------------------|
|                             |               | 1.       | Perform a dilution series of the PCR template to determine whether    |
|                             | Inhibitor     |          | the effect of the inhibitory agent can be reduced.                    |
|                             | Present       | 2.       | Take extra care with the nucleic acid extraction steps to minimize    |
| Poor Signal or<br>No Signal |               |          | carryover of PCR inhibitors.                                          |
|                             | Degraded      | 1.       | Do not store diluted template in water or at low concentrations.      |
|                             | Template      | 2.       | Check the integrity of template material by automated or manual gel   |
| No Signal                   | Material      |          | electrophoresis.                                                      |
|                             | Inadequate    |          |                                                                       |
|                             | Thermal       | 1.       | Try using a minimum extension time of 30 sec for genomic DNA and      |
|                             | Cycling       |          | 15 sec for cDNA.                                                      |
|                             | Conditions    |          |                                                                       |
|                             |               | 1.       | To minimize the possibility of contamination of PCR components by     |
|                             | Contamination |          | PCR product or other template, designate a work area exclusively for  |
| Signal in                   | of Reaction   |          | PCR assay setup.                                                      |
| Negative                    | Components    | 2.       | Use a solution of 10% bleach instead of ethanol to prepare the        |
| Control                     | with Target   |          | workstation area for PCR assay setup. Ethanol will only induce        |
|                             | Sequence      |          | precipitation of DNA in your work area, while the 10% bleach solution |
|                             |               |          | will hydrolyze, as well as dissolve, any residual DNA.                |
| Poor                        |               | 1.       | Perform a dilution series of the PCR template to determine whether    |
| Reproducibility             | Inhibitor     |          | the effect of the inhibitory agent can be reduced.                    |
| Across                      | Present       | 2.       | Take extra care with the nucleic acid extraction steps to minimize    |
| Replicate                   |               |          | carryover of PCR inhibitors.                                          |
| Samples                     | Primer Design | 1.       | Verify primers design at different annealing temperatures.            |
|                             |               | 1.       | Reduce primer concentration.                                          |
|                             |               | 2.       | Evaluate primer sequences for complementarity and secondary           |
| Low or High                 | Primer- Dimer |          | structure. Redesign primers if necessary.                             |
| Reaction                    |               | 3.       | Perform melt-curve analysis to determine if primer- dimers are        |
| Efficiency                  |               |          | present.                                                              |
|                             | Insufficient  | 1.       | Use a thermal gradient to identify the optimal thermal cycling        |
|                             | Optimization  |          | conditions for a specific primer set.                                 |

# Caution

- 1. Shake gently before use to avoid foaming and low-speed centrifugation.
- 2. Reduce the exposure time.
- 3. During operation, always wear a lab coat, disposable gloves, and protective equipment.



